

Planned Flight of the Inflatable Reentry Vehicle Experiment 3 (IRVE-3)

8th International Planetary Probe Workshop

Robert Dillman, Neil Cheatwood, Steve Hughes, Joe Del Corso, RJ Bodkin, & Aaron Olds

Changes from IRVE-II to IRVE-3

IRVE-II Flew August 17, 2009

- 2-stage sounding rocket, 218km apogee; 125kg, 3m diameter RV saw 1.8W/cm²
- Provided flight demonstration of aeroshell inflation and reentry stability
- Heat flux handled by 3 layers of Nextel fabric, no insulation

IRVE-3 Mission Objectives

- Demonstrate the reentry survivability of an inflatable aerodynamic decelerator with a flight relevant Thermal Protection System (TPS) in a flight environment with a peak reentry heat rate greater than 15 W/cm², and
- Demonstrate the effectiveness of an offset CG on the flight L/D of an inflatable aerodynamic decelerator.

IRVE-II → IRVE-3 Upgrades

- 3-stage sounding rocket, 476km apogee
- Reentry vehicle mass more than doubled
- 3m inflatable, calculated flux ~18W/cm²
- Flight relevant TPS with insulation layers
- Improved inflatable structure with thinfilm bladders for lower gas leak rate
- Improved inflation system with re-closable valve replacing pyro valve
- Motorized CG-offset system for L/D

- ACS for 3-axis control prior to entry, roll control during entry
- Instrumented TPS on nose
- Improved sensors: 5 flux gauges & pressure taps on nose, IMU, GPS,
 64 distributed thermocouples, & 4 cameras for 360° continuous video
- Launch late April 2012
- US Navy will attempt recovery

IRVE-3 Mission Concept

Start Aeroshell Inflation 478s, 423km (110s to 7.5psi)

Eject Nose Cone 132s, 242km

Coast...

NIACS damps rates 91s to 131s

Separate RV & Nose Cone From Brant & Transition 90s, 149km

IPPW-8

Actuate CG offset system 588s, 266km (1s duration)

Start ACS Reorientation 589s, 263km (60s duration)

Atmospheric Interface, 25Pa (649s, ~80km)

RV Peak Heat Rate 18W/cm² 673s, 49km, Mach 7 (peak Mach 10.2)

RV Peak Dynamic Pressure 5035Pa 678s, 41km, 20.8g's

Reentry Experiment Complete at Mach < 0.7

(706s, 37km)

CG Offset Maneuvers

LOS by land radar & TM 15km altitude

Vent NIACS and Inflation System Gas

RV splashdown at 30m/s 383km downrange (1227s)

Attempt Recovery of RV

Stowed (18.5")

IRVE-3 Design Overview

- 3m [118"] diam inflatable aeroshell with flexible TPS on forward surface
- Centerbody houses inflation system, CG offset mechanism, telemetry module, battery power systems, ACS, cameras
- Inflatable aeroshell packs to 18.5" diam inside nose cone for launch

Inflatable Aeroshell

Inflatable Structure

- Toroids made from thin-film bladders covered by woven Kevlar sheathes
- Structural straps join bladders to each other and to RV centerbody
- Filled with nitrogen to nominal 10psig
- EDU1 tested, EDU2 under construction

Thermal Protection System

- Multi-layer TPS defined in Langley SOW
- EDU fabricated, fit to inflatable structure
- Nose TPS EDU passed testing in JSC TP2
 - 10W/cm² and 20W/cm² full load; 30W/cm² for 5min

June 9, 2011

IPP\\\/-8

Inflation System

- Started by RV command timer
- 3000psi inflation tank supplies
 Nitrogen to aeroshell
- Control valve fills system to nominal 10psig; re-opens during descent to maintain pressure differential
- Analyzed with MSFC's GFSSP code
- System-level testing will verify time required to inflate EDU structure
- Full checkout in Langley complete system test in vacuum chamber before launch

Regulator

CG Offset System

- Motorized CGO shifts aft centerbody (TM, power, ACS) laterally relative to inflation system and aeroshell; transducers measure displacement
- EDU passed testing; flight unit tests will measure CG change with displacement
- CG will be centered for launch, and shifted after aeroshell inflation for L/D of 0.1
- ACS maintains roll angle of 0° during reentry for lift-up trajectory
- IMU, GPS, accelerometers, and ground radar provide trajectory data to evaluate
 L/D performance of inflatable aeroshell
- After reentry heat & pressure pulse, CGO shifts CG across RV centerline for liftdown trajectory; trajectory data will be used to evaluate speed of response

Splashdown and Recovery

- Splashdown 20min after launch
- With predicted aeroshell leak rate, inflation system will maintain pressure
- Splashdown at ~30m/s (67mph)
- Preliminary analysis indicates Kevlar structure should survive largely intact
- 3-sigma landing ellipse 269 x 367km
- RV will be tracked by WFF radars in Virginia and North Carolina
- All data broadcast to ground stations, including IMU and GPS locations
- US Navy will attempt to recover RV
- Dye marker packs included on RV to aid recovery

Remaining Work

- Continued updates of reentry trajectory & CFD
- Close out final design details
- Finish fabrication of centerbody hardware: inflation system, CG offset system,
 ACS, telemetry module
- Assembly and testing of centerbody hardware
- Testing of inflatable aeroshell structure EDU2
 - Pressure/load tests
 - Laser scan of geometry
 - Leak rate tests
 - Stiffness measurements
 - Deployment tests
- Update reentry analyses based on EDU2 stiffness
- Fabrication, assembly, and testing of flight aeroshell
- RV integration and complete system test in LaRC 16m vacuum chamber
- LV integration and testing at WFF
- Launch!
- Post-flight data analysis and aeroshell inspection

Questions?

